Fluid Flow Through Pipes
SDS 374C Final Project

Joseph Voss
May 11, 2016

1 Introduction and Purpose

The topic I chose to research for this project was fluid flow. Originally I had
intended to simulate the results from a laboratory experiment I had com-
pleted earlier this semester by modeling the flow of fluid around a cylinder.
However, I experienced a lot of difficulty simulating basic scenarios by solv-
ing the Navier Stokes equations, and instead decided to study the flow of
fluid through a channel. While it may seem trivial, understanding this flow
is essential to modern system design, and was the main focus of my fluid
mechanics course in the latter half of the semester. The key aspects of inter-
est are the pressure and velocity components as the flow travels, along with
studying the viscous losses associated with the flow.

To learn the basics of computational fluid mechanics I read several text-
books and online articles. However, the most useful resource by far was the
12 Steps to Navier-Stokes online course published by the Lorena A. Barba
research lab. Through a series of interactive ipython notebooks they model
several types of one dimensional and two dimensional flows, before eventually
building up to a basic solution of the Navier-Stokes equations. This resource
showed me a relatively simple was to model fluid flow, and provided the
equations necessary along with a rough outline of the different steps required
to solve them.

2 Algorithim to be Parallelized

To solve this problem the two dimensional Navier Stokes equations were used
in addition to the Possion Pressure equation. These are all second order dif-
ferential equations and will have to be approximated discretely. The original
equations are depicted below, and offer a comprehesive description of Newto-
nian viscous flow. Additionally, if the flow is assumed to be incompressible,
(an assumption which is valid for flows with a Mach number slower than
0.3) then the Possion Pressure equation can be used as a continunity con-
straint. Together these three equtations allow for the pressure along with
the horizontal and veritical velocity at each point to be known.
Navier Stokes X-Momentum

ou Ou Ou 19p V<82u 82u>

ot or ey T por
Navier Stokes Y-Momentum

@+u@+ Ov __18p+y<82'0+820>

ot ox ox? 0y?

B a2 " o

V— =
dy p Oy
Possion Pressure Equation

Pp ?p oudu _Oudv Ovdv
et e = —p| e P2
ox? Oy? <8x ox Oy ox Oy 3y>

Due to viscous effects fluid travelling in a channel or pipe develops a head
loss, and need some force to drive the flow. Therefore a constant force was
added to the X-Momentum equation. Once these equations are discretized
they can be rearranged to solve for the next time step for the horizontal and
vertical velocity. This can be done because the momentum equations have a
component of velocity that is differentiated by time. However, in the pressure
equation the pressure terms are only differentied by the x and y dimensions.
Therefore, the pressure equation needs to be solved by successive iterations,
while the momentum equations can be solved in a single timestep.

3 How that Parallelization was acheived, de-
sign goals

The continous flow region was divided into a grid composed of several uni-
form cells. Each of these cells have their own horizontal and vertical velocity

components and along with a pressure value. These cells can be solved inde-
pendently within each time-step, and are thereby suitable for parallelization
using MPI. The solved values for each cell are distributed among the different
processors used. To solve each cell the values of it’s neighboors need to be
known, so there has to be some communication at the end of each time step.
These communicated values are then used in the discritized equations to
solve for the values of each cell at the next time step. This continues for the
specified amount of time and for each cell in the grid. The cells are divided
up linearly and assigned to a processor. If the number of cells are not evenly
divisable, then the remaining cells are added to seperate processors one at a
time. By doing so the most unequal workload would be one addtional cell
on some processors. If each processor has several hundred cells already, this
imbalance is neglible.

The algorithim stated in the previous section was broken into two main
stages; the pressure solving and the velocity solving. The pressure solution
for each cell needs to be done in pseudo-time, with communication between
processors at the end of each pseudo-time step. However, only the previous
pressure components actually change with each pseudo-time step. The other
components of the pressure equation are all due to the velocity, which doesn’t
change during the pseudo-time steps. Therefore the pressure equation can
be broken into two parts. The velocity component’s contribution to the
pressure is solved at the begining of each full time step, while the pressure
components are modified within the pseudo-time loop. At the end of each
pseudo-time step these two pieces are added together to find the pressure
for the current cell. By moving the constant velocity components out of
the pseudo-time loop the total computation for each pseudo-time step is
cut in half. Once all of a processor’s cells have been solved for then an all
gather vector communication is performed. The all gather collects each of
the data from the processors local cells, then broadcasts it to all of the other
processors and stores in their individual global arrays. This solves the issue
of distributed data for each cell, allowing them to know the values of their
neighboors for their individual calculations. An all gather vector was needed
here instead of a regular all gather because of the potential unequal loading
of the processors. The number of cells on each processor is found initially
and broadcast to every processor so the variable length communication can
take place.

Once the pressure for each cell is found the velocity components can
be found in a similiar fashion. The velocity components only require one

time step to find a solution however, instead of iterating over pseudo-time
steps in addition to the actual time steps. Using the pressure and velocity
found for the previous time step the X and Y components of velocity for the
current step can be found. This is then stored along with the previously found
pressure for this time step in an multi-dimensional array of structs. Once this
is done for each cell on the processor another vector all gather is performed,
distributing the data from each cell to an array in each processor. Once this
is done the time step is incrimented, and the pressure and velocity data for
each cell is found again. This continues until the last time step is reached,
after which the data is written out sequentially to an HDF5 file for post-
processing visualization. A pseudo-code representation of this parallelization
is shown below.

while counter < numberTimeSteps

//Make initial pressure array and

//Find velocity component of pressure
for 1 in numCells

solvedPressure[0] [1] = solvedData[counter-1][i].
P
velocityComponent [i] = presVelComponent (

xLocation, yLocation)

//Find pressure
while subCounter < numberPseudoTimeSteps
for i in numCells
localPresData[i] = pressSolve (xLocation,
yLocation)

MPI_Allgatherv(localPresData, solvedPrePresDatal
subCounter])

subCounter += 1;
//Find velocity and store data

for i in numCells
localDatal[i] .u

xMomentumSolve (xLocation,

yLocation)

localbData[i] .v = yMomentumSolve (xLocation,
yLocation)

localData[i].p = solvedPressure|

numberPseudoTimeSteps—-1] [startingLocation+i]

MPI_Allgatherv(localVelData, solvedVelData[counter] [0])

subCounter = 1
counter += 1

4 Timing Results and Trace

The program was run for a 300x300 size grid with 500 time steps and 300
pseudotime steps. The timing results for this large-scale run can be seen in
Figure 1. As one can see, the run time actually increases with the number
of cores initially. The reason behind this can be seen in the trace diagram
for a small-scale version of this program in Figure 2. One can see the large
blocks of MPI communication which fills up most of the diagram. The tiny
slivers of brown green in between them are where the actual calculations are
being performed. Therefore the timing behavior observed makes intuitive
sense. For large work loads the performance is increased as the number of
processors increase, to a certain extent. Once the workload on each processor
is light enough the communication between the processors becomes a much
more limiting factor than the calculations itself. After this point, additional
processors will do nothing fill the network with more communications and
make the program more and more reliant on slow communications to do the
same amount of work. This explains why the performance gain per processor
isn’t a linear or even asymptopic curve, but rather can actually increase the
run time of the program. However, the run time then drastically decreases
as more processors are added, which is not the expected behavior at all and
I don’t understand. The efficiency is very low though, seeing as how with 80
processors the program runs slower than 5 processors.

In Figure 3 one can see the solved image of flow for laminar flow through a
channel. The constant color background means that the pressure is constant
everywhere, and the viscous effects due to the walls clearly reduce the energy
of the flow. Because the velocity gradient isn’t a parabola this means that
the flow is still developing, and viscous effects will become more dominant as
time progresses. All of these observations coincide exactly with the ideal and
experiemental behavior of two dimensional flow through a pipe, thus proving
that the model was successful in modelling flow under these conditions.

Figure 1: Timing results, Number of Processors vs. Runtime (s)

250 T T T

T - T
"JcleanedTiming.txt'

200 +

100 -

50 -

o] 10 20 30 40 50 60 70 80

Figure 2: TAU trace of the program

Figure 3: The solved velocity and pressure data

